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Abstract. Deep neural networks have achieved significant performance
in semantic segmentation especially when labeled data is abundant. How-
ever, acquiring large amounts of labeled data is a non-trivial, expensive,
and time-consuming task in medical imaging that requires experts’ in-
put. Since unlabeled examples are easier to acquire, it is desirable to
exploit available unlabeled data to improve the semantic segmentation
network’s performance. In this paper, we propose a novel Multi-Scale
Training (MuST) semi-supervised framework based on Consistency Reg-
ularization for medical image segmentation task. Deep neural networks
have achieved significant performance in semantic segmentation espe-
cially when labeled data is abundant. However, acquiring large amounts
of labeled data is a non-trivial, expensive, and time-consuming task in
medical imaging that requires experts’ input. Since unlabeled examples
are easier to acquire, it is desirable to exploit available unlabeled data
to improve the semantic segmentation network’s performance. In this
paper, we propose a novel Multi-Scale Training (MuST) semi-supervised
framework based on Consistency Regularization for medical image seg-
mentation task.To effectively leverage the unlabeled examples, we specif-
ically apply the Consistency Regularization technique on intermediate
decoder layers independently. This simple and general framework can be
applied to any encoder-decoder neural network such as U-net. The pro-
posed framework was evaluated on white matter hyperintensity segmen-
tation and brain tumor segmentation. Our framework, trained on a small
number of labeled samples and a relatively abundant unlabeled samples,
outperformed supervised baselines and achieved comparable results when
all the labeled samples were available. We perform an extensive ablation
study to evaluate the effectiveness of each part of our framework as well
as its effectiveness when different labeled data sample sizes.

Keywords: Semi-supervised - Feature Space Perturbation - Layerwise
Consistency Regularization

1 Introduction

Image segmentation is a fundamental task in medical image analysis as it pro-
vides a tool to enable computer-aided diagnostic and quantify anatomical struc-
tures, lesions, and diseases [22, 16]. Despite the significant improvement obtained
by modern deep neural networks in various tasks, training a strong segmentation
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Fig.1: Overview of Multi-Scale Consistency Training (MuST)

network requires a significant amount of pixel-wise labeled data [10]. However,
large-scale labeled data acquisition is challenging and time-consuming, especially
in the medical domain, which requires domain experts’ input [27]. Consequently,
the medical imaging community has increasingly begun investigating approaches
such as semi-supervised learning (SSL). SSL is appealing since it takes advantage
of available unlabeled data to alleviate the need for labeled examples.

There exist many approaches for SSL which have been proposed in the lit-
erature. One of the most common methods for SSL is pseudo-labeling, which
attempts to generate pseudo-labels for unlabeled images and combines these
with labeled data to update the network [23,19,2,25,13,1, 14]. Entropy mini-
mization is similar to pseudo-labeling, but minimizes the entropy of the model
outputs to produce more confident predictions [4,9,21]. Performance of these
approaches heavily relies on the quality of model outputs (i.e., for generating
pseudo-labels or computing entropy), which can be noisy and affect future pre-
dictions. Other approaches employ generative adversarial networks (GANs) for
generative modeling in SSL [26, 5]. However, effective GAN training is difficult
and requires extensive hyperparameter tuning. In this work, we focus on Consis-
tency Regularization (CR), which is a popular approach, achieving state-of-the-
art performance in various tasks. Specifically, CR produces a robust model by
enforcing consistency in model output across different perturbations of unlabeled
input data [12,24,7,17,8].

The efficacy of CR is highly dependent on two conditions. First, the cluster
assumption should hold; i.e., the decision boundary should reside in a low-density
region, according to the data-distribution. While this may be violated in the in-
put space, it has been shown to be preserved in the feature space [17, 8]. Second, a
strong and diverse set of data-perturbations are vital for effective CR training [6,
17, 8]. Cross-Consistency training (CCT) [17] proposes to address both of these
conditions by using feature space augmentation to enforce consistency between
decoders in a semantic segmentation task. This method achieves state-of-the-art
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performance and has been successfully applied in whole-brain segmentation [3].
The approach is appealing for brain lesion segmentation such as White Matter
Hyperintensity (WMH) segmentation, since augmentation occurs in the hidden
space, rather than the image space. Naive augmentation in image space can erad-
icate lesions, which may present as small or even dots, and therefore alters the
semantic of the brain image. Although CCT has been applied in whole-brain seg-
mentation, more complex brain segmentation tasks, such as WMH segmentation,
can be improved by multi-scale approaches which are beneficial for the segment-
ing fine-grained boundaries [18]. Until now, no method considers the benefit of
multi-scale training for consistency regularization in brain segmentation tasks.

Accordingly, this paper proposes a novel Multi-Scale Training (MuST) for
semi-supervised framework which enforces consistency at different resolutions.
Concretely, each decoder layer of U-net receives an original and perturbed ver-
sion of the feature representation and learns to produce a consistent prediction
across layers. Hence, the shared encoder learns to produce robust feature repre-
sentations at different resolutions, and each decoder layer is updated indepen-
dently to learn perturbation invariant features. This way, the model can leverage
unlabeled examples to better learn to identify small lesions and lesion bound-
aries. We evaluate this proposal using two publicly available datasets for brain
tumor and WMH segmentation tasks. We perform extensive ablation study to
show that feature-space augmentation at different scales is beneficial compared
to augmentation at only a single scale.

2 Approach

2.1 Problem Definition

Let De = {(24,9}), (xh,94), ..., (zL,,9%,)} and Dy = {z¥, 24, ...,2%} be the la-
beled and unlabeled set of training examples respectively, where z% and x! are
the i*" unlabeled and labeled image with spatial dimension of M x H x W and
y! is a target image corresponding to x! with dimensions C' x H x W. Here, M
is the number of input modalities, C' is the number of classes, and H x W gives
the pixel dimensions. The goal is to train a network for medical image segmenta-
tion, leveraging a large set of unlabeled training examples and only a few labeled
examples (i.e., n >> m) so that the network generalizes well on unseen images.

We define an encoder network e = (ex,ex_1,...,e9) and a main decoder
network g = (go, 91, .-, 9k, gic+1). In the experiments, we use a 2D U-net with
symmetric encoder-decoder as the backbone of our framework [20]. The U-net
encoder-layers are connected using down-sampling functions. Therefore, the out-
put of the encoder-layer at layer k is is hy =) (ex(hg—1)) where | (+) isa 2 x 2
max-pooling layer and the recursive base case h_; is set to be the input image.
The decoder gj, is connected to the previous decoder g1 using an up-sampling
function and its corresponding encoder-layer ey via skip connection. The input
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of the decoder-layer gi (i.e., at layer k) is written:

(1)

hi—1 ifk=K+1
k= .
hic || T (gk+1(2k+1)) otherwise

where K is the number of pairwise encoder-decoder layers, gx 41 is the first
decoder (i.e., the bottleneck layer), || is channel-wise concatenation, and 1 (+)
is an up-sampling function. For simplicity, we do not distinguish between the
bottleneck layer and other decoder-layers in the remainder of this paper.

Our goal is to enforce consistency on the output of each decoder gi. For this,
an auxiliary classifier ay is inserted after decoder-layer to produce segmentation
predictions at layer k. Specifically, fr = (fr1,. .-, fe,c) = (ax o gr)(2k) gives the
pixel-wise scores of the network at layer k for each of the C' classes, and f = fj
gives the final scores of the network, which is used for segmenting new examples
at test-time. In particular, from the input image z (i.e., the recursive base case)
f can be computed using the recursive equation given previously. Occasionally,
to emphasize this dependence on x we abuse notation and write f(z). Similarly,
we write fx(x) for the output of the network at layer k& with = as the input.
In order to perform consistency regularization at different scales, we produce
augmented version of zp by applying a stochastic feature-space perturbation 7
and enforcing consistency on the produced feature maps f; and fj, = (arogr)(Zk)
where 7, = 7(2g). In other words, the decoder g; can be interpreted as a shared
weight teacher-student model. Throughout the paper, g; and gi refer to the
teacher (i.e., gr(zx)) and student (i.e., gx(2r)) decoders, respectively.

Our proposed framework has two main components: (i) multi-scale consis-
tency regularization training and (ii) a Stochastic Perturbation Module (SPM).
The SPM is introduced first, followed by the multi-scale consistency training.
Figure 1 illustrates the overall architecture and training procedure of the pro-
posed framework.

2.2 Stochastic Perturbation Module

As shown in Figure 1, before each decoder gi, an SPM layer is inserted. It is
responsible for generating zj from z; and providing them to the teacher and
student decoders, respectively. Given a set of predefined perturbation functions
II, with a uniform probability, SPM selects two perturbation functions, 7,75 €
IT to obtain 2z = m(hg)|| T (m2(gk+1(2k+1))). In our experiments, we consider
Uniform noise, Gaussian noise, feature dropout and spatial dropout.

2.3 Multi-Scale Consistency Training

Multi-Scale Consistency Regularization. As previously noted, in order
to leverage unlabeled examples we enforce consistency regularization at each
decoder-layer. At each layer, z;, and Zj are computed as explained in Section 2.2
and passed to the teacher and student decoders and auxiliary classifiers to pro-
duce predictions f and fi, respectively. As shown in Figure 1 the teacher output
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9k (zk) is used as an input to the next decoder gj_;. Following [4], pseudo-labels
for consistency regularization are produced by sharpening the initial teacher
predictions:

1/T
. k,j
Viell,..,Cl : fi; < Sharpen(fy,T) = Cijl/’f (2)
Zc:l k,c
where T is temperature parameter. Next, using the pseudo-labels, we define the
multi-scale consistency loss function Ly;s¢ as follows:

) K+1 )
Lusc =157 > Y dfu(@u), fr(ww)) ®3)
|Du| 74, €Dy k=0

where d(-, -) is a distance function. In this project we have adopted mean squared
error distance measure. The objective Ly;s¢ is optimized in combination with
a supervised loss described next.

Supervised Training. In addition to the multi-scale consistency objective
Lysc, we consider a multi-scale supervised training approach [18]. This should
better leverage the supervised examples [18] and is important for multi-scale
consistency regularization, since the procedure depends on the output of each
auxiliary classifier a;. The multi-scale supervised training approach below in-
stills some prior knowledge in the auxiliary classifiers, according to the small
amount of labeled data available. Specifically, we adapt the standard pixel-wise
cross-entropy loss £..(+, ) to a multi-scale supervised loss function by aggregating
over all auxiliary predictions and the final prediction as follows:

K+1

Lo= i S0 Y talfulad)ule). (4)

>
Dl (zt,yh)eDy k=0

The target y; ;, is constructed from the main ground truth label by applying a
2 x 2 function consecutively: yﬁyk =] (yf s—1) With recursive base case yio = yé.
Finally, the overall semi-supervised objective we optimize is Lgem; defined:

[fsemi - ‘Cs + Wy - ‘CMSC (5)

where w,, is the multi-scale consistency loss weight used to balance the role of
consistency regularization in training. In our experiments, w,, is slowly increased
from zero to diminish the negative impact of the initial noisy teacher predictions.

3 Experiments and Results

3.1 Datasets and Evaluation Metrics

We evaluate our proposed semi-supervised framework on brain tumor segmen-
tation and white matter hyperintensity (WMH) segmentation using publicly
available datasets: BraTS [15] and WMH challenge [11].
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BraTS. BraTS2018 contains 285 training subjects and 66 subjects for vali-
dation. Additionally, BraTS2019 introduces 50 extra subjects and BraTS2020
introduces 34 more subjects. Each patient has FLAIR, T1, T2, and Tlce MRI
images. Ground truth images have three labels: GD-enhancing tumor (ET'), per-
itumoral edema (ED), necrotic and non-enhancing tumor core (NCR/NET).
These labels are combined to create overlapping classes: Whole tumor (WT =
ET + ED + NET), enhancing tumor (ET), and tumor core (TC = ET + NET).
In our experiments, we used BraTS2018, BraTS2019 (50 newly introduced sub-
jects), and BraTS2020 (34 newly introduced subjects) as our train, validation,
and test sets, respectively.

WMH Challenge. WMH Challenge dataset includes 60 FLAIR and T1 MRI
images with corresponding binary segmentation of ground-truth WMH and brain
tissue mask. In our experiments, we held out 12 subjects for testing while en-
suring that an equal number of subjects are chosen from each site.

3.2 Experimental Setup

Implementation Details. Our framework is implemented using PyTorch and
trained on 4 x NVIDIA Quadro RTX 5000 GPU for 50 epochs (BraT§) or 100
epochs (WMH). In all experiments, the batch size for supervised and unsuper-
vised training is 32. We use SGD for optimizing loss functions with initial rate
0.01 for all experiments. We decrease the learning rate by a factor of 2 every 5,
10, 20, or 30 steps for BraTS (supervised), BraTS (unsupervised), WMH (su-
pervised), and WMH (unsupervised) losses respectively. Parameter T in Eq. (2)
is 0.5 (BraTs) or 0.8 (WMH). We use a linear ramp-up function to increase w,
in Eq. (5) from 0 to 20 (BraTs) or 30 (WMH).

Experimental Setting. Three-fold Monte-Carlo sampling is used in all ex-
periments to ensure a fair comparison. Specifically, three supervised and unsu-
pervised datasets are randomly generated for each setting. Further, three seeds
have been set to ensure reproducibility. For BraTS, average testing performance
is reported using the model with the best average validation result among seeds
and classes. For the WMH Challenge dataset, the average performance after 100
epoch iterations is reported.

Evaluation Metric. Dice coefficient evaluation is used for the purpose of eval-
uation. Since the segmentation tasks aim for accurate subject-wise predictions,
after the slice-wise predictions, slices are concatenated to obtain a subject-wise
Dice score, and the subject-wise average score is reported.

Baselines. We compare our framework against recent semi-supervised related
works on brain lesion segmentation. MASSL [5] used a 3D U-net to reconstruct
synthetic labels generated by an attention mechanism for brain lesion and WMH
segmentation task. MT [7] adapted the mean teacher-student framework for
brain tumor segmentation by adding Gaussian noise to the student and teacher
inputs. Unlike ours, the former is not a CR approach. While the latter is a CR
approach, it performs augmentation in the input space, which can be problematic
for fine-grained segmentation tasks (see Section 1).
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Table 1: Comparison of our framework with supervised baseline (SB) on BraTSs.
L and U are number of labeled and unlabeled examples used in training, respec-
tively.

Method L (U) Dice % mean(std)
WT ET TC
SB 285(0)  90.88(0.38)  86.94(0.24)  88.3(0.94)
SB 8(0) 66.84(6.06)  59.40(11.67) 54.01(13.62)
SB 14(0) 76.21(2.60)  70.95(1.61)  66.18(1.55)
SB 28(0) 83.85(0.83)  76.91(3.20)  73.94(3.88)
Ours 8(277) 71.02(5.93)  61.23(11.3)  56.58(13.3)
Ours 14(271)  79.88(0.32)  73.59(0.76)  70.43(1.26)
Ours 28(257)  83.93(0.54) 78.22(0.97) 75.01(1.57)

Practical Consideration. We sample the same amount of labeled and unla-
beled examples in each iteration. However, unlike many recent works [17] that
define the number of iterations based on the size of the bigger dataset (i.e., be-
tween labeled and unlabeled datasets), we define the number of iterations based
on the size of the smaller dataset and alternate among supervised and unsu-
pervised training. The former can lead to a biased interpretation as the model
iterates over the labeled data D, more than the unlabeled data D;;. When strong
data augmentation is used, this can lead to a higher performance regardless of
the unsupervised training, and therefore, can lead to incorrect interpretation of
improvement. Also alternate training is beneficial as different hyper-parameters
can be leveraged for supervised and unsupervised objectives.

3.3 Results

Improvement Over the Supervised Baselines. To examine the effectiveness
of the proposed framework, we compare the semi-supervised performance with
the supervised baseline (SB) using different data partitions on two datasets. Ta-
ble 1 illustrates that our method constantly improves the baseline on all classes
and partitions. Specifically, our model enhances baseline’s performance by 4.2%,
1.8%, and 2.6% with only using 8 labeled subjects on WT, ET, and TC, respec-
tively. Furthermore, our framework obtains even more improvement over the
supervised baseline on TC when using 14/48 labeled examples. As TC and ET
are smaller lesions than WT, this observation supports our hypothesis that per-
forming consistency regularization in different scales is beneficial for the smaller
lesions and boundaries. We also see similar positive results on the WMH Chal-
lenge dataset, where we improve 4% Dice score over the supervised baselines
when using 3 out 48 labeled examples (provided in the supplement). In general,
our approach consistently improves upon the supervised baseline.
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Table 2: Comparison of MuST when applying consistency regularization on dif-
ferent layers on BraTS

Layer k WT ET TC
0 69.92(5.17) 61.92(9.19) 55.66(10.91)
1 68.27(5.90)  59.32(12.56) 53.77(14.46)
K+1 69.98(4.61)  60.77(10.92) 54.63(13.25)
0,1,(K+1) 70.94(6.19) 59.91(12.31) 54.69(13.82)

all layers  71.02(5.93) 61.23(11.3) 56.58(13.3)

Stability. As depicted in Table 1, the Dice standard deviation is significantly
lower for the semi-supervised model, especially for the smaller tumors (i.e., ET
and TC) when sufficient data is available.

Effectiveness of Multi-scale Consistency. To further explore the impact
of performing consistency regularization at different layers, we quantitatively
compare our proposed framework when consistency regularization is applied at
different layers (i.e., 0; 1; K + 1; 0,1, (K + 1); and all layers). Here, £k = 0
corresponds to the final decoder-layer (i.e., fy), K + 1 corresponds to the first
decoder-layer (i.e., the bottleneck layer), and 0, 1, (K +1) means all three of these
layers combined. As shown in Table 2, consistency training on all layers brought
the best performance, which suggests the importance of multi-scale consistency
training. Interestingly, applying CR to the bottleneck layer achieves higher per-
formance than applying CR to the first or second layer on WT. This makes sense
because consistency training at lower resolutions should assist identification of
larger areas (i.e., the whole tumor). Likewise, applying CR to the final layer
achieves higher performance than applying CR to the other layers for ET and
TC, which makes sense because the final layer has the highest resolution and
these classes correspond to smaller regions. Our proposed multi-scale consistency
training reaps the benefits of both extremes.

Comparison with Related Works. In this section, we compare our method
with previous works on the WMH dataset when only 3/48 labeled examples are
used for training. In addition to the baselines mentioned in Section 3.2, multi-
scale MT is compared with our proposed method. Table 3 shows that MuST
outperforms baselines when trained using same supervision as well as multi-scale
MT. In fact, outperforming multi-scale MT confirms the importance of feature-
space perturbation. Furthermore, Table 3 shows the effectiveness of sharpening
the teacher’s outputs. The mean Dice score has improved by 1.67 %, while Dice
standard deviation has decreased by 1.86 points (i.e., increased stability) when
sharpening temperature of 7' = 0.8 is utilized compared to when no sharpening
has been performed.



MuST 9

Table 3: Comparison with related works. T is the temperature in Eq. (2). L and
U are number of labeled and unlabeled examples.

Method L (U) mean(std)
MASSL 3(45) 56.66 (7.84)
MT 3(45) 51.11(8.5)
Multi-scale MT 3(45) 51.84(4.7)
Ours (no sharpening) 3(45) 65.11(8.62)
Ours (T = 0.5) 3(45) 65.05(7.98)
Ours (T = 0.6) 3(45) 65.24(7.95)
Ours (T = 0.8) 3(45) 66.78(6.76)
Ours (T = 1) 3(45) 65.91(7.19)

4 Conclusion

In this paper we propose MuST, a novel semi-supervised framework for medical
image segmentation. This framework exploits consistency regularization tech-
nique at multi-scales to leverage unlabeled data as well as available labeled data.
Particularly, feature-space perturbations are used to produce different versions
of the same input at feature-space in order to enforce consistency on all decoders
independently. The proposed framework is evaluated on two public datasets for
brain tumor and white matter hyper intensity segmentation tasks.
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Fig. 2: Comparison of proposed semi-supervised framework with supervised base-
line on WMH Challenge dataset. The proposed method achieves 4%, 1%, 1%,
and 0.5% improvement over the supervised-baseline when using only 3, 6, 9, and
12 labeled examples out of 48 training examples.
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Fig. 3: Visualization of our method, supervised baseline, and related work on
WMH challenge dataset based on using 8 labeled examples. (a) FLAIR, (b) T1
MRI modality, (¢) Ground truth, (d) Supervised-baseline, (¢) Our method, and
(f) MASSL
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Fig.4: Visualization of our method and supervised-baseline (SB) on BraTS
dataset when trained using 8 and 14 labeled examples out 285 training examples.
GD is the ground truth. Red is NET, green is ED, and blue is ET.



